PII: S0040-4039(97)01391-9 ## Lewis Acid-Directed Reactions of Benzoquinone Mono-/Bis-imines: Application to Syntheses of Substituted β- and γ-Tetrahydrocarbolines ## Thomas A. Engler* and Jutta Wanner Department of Chemistry, University of Kansas, Lawrence, Kansas 66045-2506 Abstract: Ti(IV)-promoted reactions of N-phenylsulfonyl-3- and 4-piperidone enol ethers with 2-alkoxy-4-(N-phenylsulfonyl)imino-1,4-benzoquinone afford 8-alkoxy-7-hydroxy-tetrahydrocarbolines. However, reactions promoted by BF 3 produce substituted benzofurans. Ti(IV)- or BF 3-promoted reactions of 2-alkoxy-1-(N-benzoyl)-4-(N-phenylsulfonyl)-1,4-benzoquinone bisimines also afford substituted tetrahydrocarboline derivatives. © 1997 Elsevier Science Ltd. Nucleophilic additions to quinones and imine derivatives have been used extensively in synthesis. More recently, Lewis acid promotion of such processes have proven effective for reactions involving non-activated quinones If and weakly nucleophilic allyl-silane/stannanes, enol ethers, styrenes and simple π -systems. And Of particular interest is that the regioselectivity of styrene additions to alkoxy quinones and imine derivatives can be controlled by the nature of the Lewis acid and can be used to selectively form either 2-aryl-2,3-dihydrobenzofurans or 2-aryl-2,3-dihydroindoles. Seeking to extend the generality of this regiocontrol device to other nucleophilic species, and its application to synthesis of biologically important entities, we examined reactions of 3- and 4-piperidone enol ethers with alkoxy quinone mono- and bisimides. Herein, we report that these reactions can be manipulated to selectively form highly substituted tetrahydro- β - or γ -carbolines or benzofuran analogs. Carbolines and reduced derivatives are found in numerous classes of pharmacologically active molecules fueling interest in new methods for their synthesis. Lewis acid-promoted reactions of simple enols and enol ethers with quinones have received limited attention. Early reports include ZnCl₂-promoted reactions of 1,3-dicarbonyl compounds and BF₃-promoted reactions of enol ethers to give benzofuranols and 2-alkoxy-2,3-dihydobenzofuranols, respectively. ^{3c-g} Mukaiyama has reported that trityl perchlorate-promoted reactions of silyl enol ethers with quinones and imide derivatives give benzofuran and indole derivatives, ^{3a} and recently Murphy reported that AlCl₃-promoted reactions of dihydro-furans and -pyrans yield products of 2+2 cycloaddition and spiroannulation. ^{3b} Thus, at the outset of our work, unresolved questions were: (1) Would basic sites on the piperidone enol ether interfere? (2) What would be the nature of the addition (i.e., 3+2, 2+2, spiro- or other)? (3) Would the reactions be subject to regiocontrol by the nature of the Lewis acid? Enol ethers 2/3 were prepared by treatment of N-phenylsulfonyl-4- and 3-piperidone dimethyl ketals, respectively, with AlCl₃/Et₃N.⁸ In the latter case, the product was found as a 4:1 mixture with its 2,3-double bond isomer; in subsequent reactions with the quinone monoimide, the minor component did not interfere. Addition of 2 or 3 to a mixture of quinone monoimide 1a and excess amounts of TiCl₄:Ti(OiPr)₄ [1:1, 5 equiv of Ti(IV) with respect to monoimide] gave indole derivatives 4a or 6a,⁹ after workup [sat. aq NH₄Cl, filtration (Celite)] and silica gel chromatography (Table 1). On the other hand, BF₃-OEt₂-promoted reactions of the enol ethers with the monoimdes 1a/b gave benzofuran adducts 5/7 exclusively [workup: sat. aq NH₄Cl or H₂O, extraction (CH₂Cl₂), and sg chromatography]. Reactions with SnCl₄ as Lewis acid gave lower yields and mixtures of 4/6 and 5/7. Similarly, those of 1a with 2 promoted by 1 equiv of TiCl₄:Ti(OiPr)₄ gave a 5:2 mixture of indole 4a and benzofuran 5a. Reactions of benzyloxy monoimide 1b promoted by the Ti(IV) Lewis acid failed, only degradation of the monoimide was observed. | Table 1. Lewis Acid-Promoted Reactions of C | Duinone Monoimides | 1a/b with Enol Ethers 2/3.a | |---|--------------------|-----------------------------| |---|--------------------|-----------------------------| | Entry | Imide | Enol Ether | Lewis Acid (equiv)b | Product(s) | (% Yields)c | |-------|-------|------------|--|----------------|----------------| | 1 | 1a | 2 | 1:1 TiCl ₄ :Ti(OiPr) ₄ (5) | 4a (78) | | | 2 | 1a | 2 | 1:1 TiCl ₄ :Ti(OiPr) ₄ (1) | 4a (49) | 5a (20) | | 3 | 1a | 2 | BF ₃ •OEt ₂ (1) | | 5a (65) | | 4 | 1b | 2 | BF ₃ •OEt ₂ (1) | | 5b (66) | | 5 | 1a | 3 | 1:1 TiCl ₄ :Ti(OiPr) ₄ (5) | 6a (58) | | | 6 | 1a | 3 | 1:1 TiCl ₄ :Ti(OiPr) ₄ (1) | 6a (44) | | | 7 | 1a | 3 | $BF_3 \cdot OEt_2(1)$ | | 7a (68) | | 8 | 1b | 3 | BF ₃ •OEt ₂ (1) | | 7b (36) | (a) All reagents were combined in CH₂Cl₂ at -78°C under nitrogen and allowed to warm to rt. (b) Equivalents of Ti or B with respect to the monoimide. (c) Isolated yields. The position of the alkoxy substituents in 4-7 is assigned from ^{1}H NMR and IR spectral data. 9 In the NMR spectra of 4/6, H-6 and H-9 appear as singlets at 6.7/7.7 ppm, whereas spectra of 5/7 show H-7 and H-9 as coupled doublets at 6.5-6.7 ppm with J=1.8-1.9 Hz. In addition, an OH stretch at ~3530 cm⁻¹ is observed in IR spectra of 4/6, and an NH stretch is found at ~3350 cm⁻¹ in spectra of 5/7. The formation of indoles 4/6 or benzofurans 5/7 from the same starting materials is explained by regioselective Lewis acid activation of the monoimdes. The bidentate Lewis acid Ti(IV) binds to the C-1 carbonyl and C-2 alkoxy oxygens activating C-5 to nucleophilic addition followed by cyclization and elimination of MeOH. Workup of these reactions under basic conditions was also examined, and in some cases 2-methoxy-dihydroindole/benzofuran derivatives (e.g. 8) could be isolated. A reason for the higher yields and regioselectivity found with excess amounts of Ti(IV) is not clear at the moment, but may suggest the involvement of a quinone monoimide-[Ti(IV)]₂ complex.⁵ In the BF₃-promoted reactions, the monodentate Lewis acid binds to the more basic imide nitrogen (a vinylogous imidate), activating C-6 to addition. A few reactions of quinone bisimides **9a/b** were also studied with both Lewis acid systems as promoters; indoles **10** and **11** were found, ⁹ usually in good yields (Table 2). The appearance of H-6 and H-9 as singlets at 7.7-7.8 and 8.5 ppm, respectively, in their ¹H NMR spectra and a carboxamide NH stretch at 3425 cm⁻¹ in their IR spectra support the structural assignments. The regioselectivity of the addition is again consistent with selective activation of the bisimide through binding of the Lewis acid to the carboximide moiety (the more basic site for either a mono- or bidentate Lewis acid). $$\begin{array}{c} \textbf{2 or 3} \\ \textbf{Lewis Acid} \\ \textbf{(seeTable 2)} \\ \textbf{NSO}_2 \textbf{Ph} \\ \textbf{Quantification of Ph(O)CHN} \\ \textbf{SO}_2 \textbf{Ph} \textbf{SO}_2$$ Table 2. Lewis Acid-Promoted Reactions of Quinone Bisimides 9a/b with Enol Ethers 2/3.a | Entry | Imide | Enol Ether | Lewis Acid (equiv) ^b | Product (% Yields) ^c | |-------|-------|------------|--|---------------------------------| | 1 | 9a | 2 | BF ₃ •OEt ₂ (1) | 10a (77) | | 2 | 9a | 2 | 1:1 TiCl ₄ :Ti(OiPr) ₄ (5) | 10a (81) | | 3 | 9b | 2 | BF ₃ •OEt ₂ (1) | 10b (65) | | 4 | 9a | 3 | BF ₃ •OEt ₂ (1) | 11 (38) | | 5 | 9a | 3 | 1:1 TiCl ₄ :Ti(OiPr) ₄ (5) | 11 (80) | (a) All reagents were combined in CH₂Cl₂ at -78°C under nitrogen and allowed to warm to rt. (b) Equivalents of Ti or B with respect to the monoimide. (c) Isolated yields. This new method holds considerable promise for regioselective syntheses of highly substituted carbolines and derivatives. For example, the phenol and amide substituents in 4-7 and 10-11 should be easily removable or convertible to various other groups via their corresponding triflates or amines ¹⁰ and oxidation of tetrahydrocarbolines to carbolines is well-precedented. The chemistry is complimentary to approaches based on Fisher, Nenitzescu and related indole syntheses. ¹¹ Acknowledgments. This research was supported financially by the National Science Foundation (OSR-9255223 and OSR-9550487) and the University of Kansas General Research Fund. ## References and Notes - 1. For reviews a) Perlmutter, P. "Conjugate Addition Reactions in Organic Synthesis", Tetrahedron Organic Chemistry Series Vol. 9; Pergamon: Oxford, 1992; pp. 322-330. b) Finley, K.T. In "The Chemistry of the Quinonoid Compounds, Vol. 2, Part 1", Patai, S.; Rappaport, Z., Eds.; Wiley:Chichester, 1988; p. 537. c) Allen, G.R., Jr. Org. React. 1973 20, 337-454. d) Adams, R.; Reifschneider, W. Bull. Soc. Chim. Fr. 1958 1, 23-65. e) Brown, E.R. "Quinone Dimines, Monoimines and Related Compounds" In "The Chemistry of the Quinonoid Compounds, Vol. 2, Part 2", Patai, S.; Rappaport, Z., Eds.; Wiley:Chichester, 1988; p. 1231. f) Nucleophilic additions to quinones bearing electron-withdrawing groups are common. - 2. a) Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1977, 4041-4044. b) Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1978, 2589-2592. c) Ipaktschi, J.; Heydari, A. Angew. Chem. Int. Ed. Engl. 1992 31, 313-314. d) Naruta, Y. J. Am. Chem. Soc. 1980 102, 3774-3783. For reviews and summaries of related papers, see e) Fleming, I, Dunogués, J.; Smithers, R. Org. React. 1989 37, 57-575. f) Naruta, Y.; Nishigaichi, Y.; Maruyama, K. In "The Chemistry of Quinonoid Compounds, Vol. II" Patai, S.; Rappoport, Z., Eds.; Wiley-Interscience: Chichester; Chapter 8. - 3. a) Mukaiyama, T.; Sagawa, Y.; Kobayashi, S. Chem. Lett. 1987, 2169-2172. b) Neville, D.; Murphy, W.S. Tetrahedron Lett. 1996 37, 5221-5224. c) Bernatek, E. Acta Chem. Scand. 1953 7, 677-681. d) Bernatek, E.; Ledaal, T. ibid. 1958 12, 2053-2054. e) Grinev, A.N.; Pan, B.-K.; Terentev, A.P. Zhur. Obschei Khim. 1957 27, 1087-1089; Chem. Abstr. 1958 52, 3761e. f) Giza, C.A.; Hinman, R.L. J. Org. Chem. 1964 29, 1453-1461. g) Brannock, K.C.; Burpitt, R.D. U.S. Patent 3,285,937, 1966; Chem. Abstr. 1967 66, 37762p. See also, h) Ipaktschi, J.; Heydari, A. Chem. Ber. 1992, 125, 1513-1515. i) Danishefsky, S.; McKee, R.; Singh, R.K. J. Org. Chem. 1976 41, 2934-2935. - 4. a) Engler, T.A.; Combrink, K.D.; Letavic, M.A.; Lynch, K.O., Jr.; Ray, J.E. J. Org. Chem. 1994, 59, 6567-6587. b) Engler, T.A.; Gfesser, G.A.; Draney, B.W. J. Org. Chem. 1995, 60, 3700-06. c) Engler, T.A.; Meduna, S.P.; LaTessa, K.O.; Chai, W. J. Org. Chem., 1996, 61, 8598-8603. d) Engler, T.A.; Chai, W. Tetrahedron Lett., 1996, 37, 6969-6970. e) Murphy, W.S.; Neville, D. Tetrahedron Lett. 1996 37, 9397-9340. - 5. a) Engler, T.A.; Wei, D.; Letavic, M.A.; Combrink, K.D.; Reddy, J.P. J. Org. Chem. 1994, 59, 6588-6599. b) Engler, T.A.; Chai, W.; LaTessa, K.O J. Org. Chem., 1996, 61, 9297-9308. - 6. Adams and Boger have reported regiocontrolled additions to quinone imines and Reusch, Valenta and Hendrickson have explored regioselective Lewis acid-activation of quinones for Diels-Alder reactions. For leading references, see reference 1d and a) Boger, D.L.; Zarrinmayeh, H. J. Org. Chem. 1990 55, 1379-1390. The regioselective addition of HCl to quinone bisimides has been questioned, b) Holmes, T.J., Jr.; Lawton, R.G. J. Org. Chem. 1983 48, 3146. c) Tou, J.S.; Reusch, W. J. Org. Chem. 1980, 45, 5012-5014. d) Dickinson, R.A.; Kubela, R.; MacAlpine, G.A.; Stojanac, Z.; Valenta, Z. Can. J. Chem. 1972, 50, 2377-2380. e) Stojanac, Z.; Dickinson, R.A.; Stojanac, N.; Woznow, R.J.; Valenta, Z. Can. J. Chem. 1975, 53, 616-618. f) Das, J.; Kubela, R.; MacAlpine, G.A.; Stojanac, Z.; Valenta, Z. Can. J. Chem. 1979, 57, 3308-3319. g) Hendrickson, J.B.; Singh, V. J. Chem. Soc., Chem. Commum. 1983, 837-838. h) Hendrickson, J.B.; Haestier, A.M.; Stieglitz, S.G.; Foxman, B.M. New J. Chem. 1990, 14, 689-693. For another report, i) Engler, T.A.; Letavic, M.A.; Lynch, K.O., Jr.; Takusagawa, F. J. Org. Chem. 1994, 59, 1179-1183. - 7. For reviews and leading references, a) for β-carbolines: Love, B. Org. Prep Proceed. Int. 1996 28, 1-64. Cox, E.D.; Cook, J.M. Chem. Rev. 1995 95, 1797-1842. Baker, B.J. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S.W., Ed.; Pergamon: New York, 1996; Vol. 10. Ohmoto, T.; Koike, K. In The Alkaloids; Brossi, A., Ed.; Academic: San Diego, 1989; Vol. 36, pp. 135-170. b) for γ-carbolines: Gribble, G. W. In The Alkaloids, Brossi, A., Ed.; Academic: San Diego, 1980; Vol. 39, Chapter 7. c) for δ-carbolines, Desarbre, E.; Mérour, J.-Y. Synthesis 1997 73-78. For examples of recent reports, d) Suzuki, H.; Iwata, C.; Sakurai, K.; Tokumoto, K.; Takahashi, H.; Hanada, M.; Yokoyama, Y.; Murakami, Y. Tetrahedron 1997 53, 1593-1606. e) Audia, J.E.; Evrard, D.A.; Murdoch, G.R.; Droste, J.J.; Nissen, J.S.; Schenck, K.W.; Fludzinski, P.; Lucaites, V.L.; Nelson, D.L.; Cohen, M.L. J. Med. Chem. 1996 39, 2773-2780. f) Ezquerra, J.; Lama, C.; Pastor, A.; Alvarez, P.; Vaquero, J.J.; Prowse, W.G. Tetrahedron Lett. 1996 37, 5813-5816. g) Mohan, R.; Chou, Y.-L.; Morrissey, M.M. ibid. 1996 37, 3963-3966. h) Mayer, J.P.; Bankaitis-Davis, D.; Balachon, G.; Bjergarde, K.; Andersen, C.M.; Goodman, B.A.; Herrera, C.J. ibid. 1996 37, 5633-5636. h) Amat, M.; Hadida, S.; Sathyanarayana, S.; Bosch, J. ibid. 1996 37, 371-3074. j) Li, J.-H.; Snyder, J.K. ibid. 1994 35, 1485-1488. k) Rocca, P.; Marsais, F.; Godard, A.; Queguiner, G. Tetrahedron 1993 49, 3325-3342. l) Dekhane, M.; Dodd, R.H. ibid. 1994 50, 6299-6306. m) Chen, C.-y.; Lieberman, D.R.; Larsen, R.D.; Verhoeven, T.R.; Reider, P.J. J. Org. Chem. 1997 62, 2676-2677. - 8. a) Barbot, F.; Miginiac, P. Helv. Chim. Acta 1979 62, 1451-1457. See also, b) Faja, M.; Reese, C.B.; Song, Q.; Zhang, P.-Z. J. Chem. Soc., Perkin I 1997 101-104. - 9. All new products were fully characterized by $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR, IR and mass spectral data, including exact mass and/or elemental analysis. - 10. For examples, see references 4 and 5. - 11. For a summary of methods, see Sundberg, R.J. Indoles, Academic: San Diego, 1996.